Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications

Extended version: Cryptology ePrint Archive, Report 2015/854

Jeroen Delvaux Ingrid Verbauwhede Mandel Yu

KU Leuven, COSIC and iMinds

- Shanghai Jiao Tong University, LoCCS
- Technical University Munich

Verayo and MIT

CHES 2016, Santa Barbara, CA, USA

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 01/12

PUF-Based Key Generation

Can we make the default architecture more efficient?

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 02/12

Presentation Outline

(1) Preliminaries: PUF and secure sketch

(2) **THEORY**: tighter bounds on the secure sketch min-entropy loss

sorry, paper only, not here

secure sketch

2 CHES

2015

papers

(3) **APPLICATIONS**: Focus of this talk

- Reduction in implementation footprint
- Debunk security proof of *reverse fuzzy extractor*
- Proper motivation for debiasing schemes

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 03/12

Preliminaries: Array-Based PUFs

Array of identical cells, each producing 1 device-unique bit

* SRAM, DRAM, DFF
PUFs (memory-based)
* 1 RO-based PUF
* Coating PUF
* Arbiter PUF and
variations

issue 1: noisiness

BER 1% - 20% w.r.t. a reference response

issue 2: non-uniformities more 1 than 0, or vice versa

bias

spatial correlations

1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1

neighboring cells influence each other

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 04/12

Preliminaries: Secure Sketch

System providers use (n-k) upper bound on the min-entropy loss

tighter upper/lower bounds (enclosing true value, easy-to-evaluate)

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 05/12

Related work: defeat (*n*-*k*) bound

• New research direction [Delvaux et al., IEEE TCAD 2014] (Maes et al., CHES 2015]

so far only repetition codes and i.i.d. PUF bits (bias)

1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1

Pr(x(i) = 1) = b
with $b \in [0,1]$

• We considerably **extend the scope** on two fronts

<u>1) Large complex codes</u>: BCH, RM, concatenations, ...

2) Various PUF distributions: bias, spatial correlations, ...

1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1

Pr(x(i) = x(i+1)) =c with c $\in [0,1]$

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 06/12

Application: reduce implementation footprint Specs: 128-bit key, BCH+REP code, Pr(error) = 0.1, Pr(fail) ≤ 1E-6

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 07/12

Application: Reverse fuzzy extractor (1/2)

Technique to reduce footprint of PUF-based protocols:

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 08/12

Application: Reverse fuzzy extractor (2/2)

Claim: repeated helper data exposure does <u>not</u> result in additional min-entropy loss

Proof: from [Boyen, ACM CCS 2004] flawed transfer

implicit exposure of individual bit error rates is overlooked

Intuition of unanticipated entropy loss: for biased PUF

PUF error	1 0 1 1	1 0 1 1 1 1 1	1 0 1	1 1	1 0	1 1	1	1
statistics	1 70%	E[BER] ≈ 9% ⁻		rall			10	10/
e.g., [Maes, CHFS 2013]	0 30%	E[BER] ≈ 13%		(d))	CLDC	κ] ~	ΤC	170

practice: conservative (n-k) bound acts as counterweight

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 09/12

Application: motivation for debiasing schemes

Conjecture that a stand-alone sketch cannot handle bias (which is correct in case the n-k bound is applied)

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 10/12

Application: motivation for debiasing schemes

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 11/12

Summary

THEORY: tight bounds on the secure sketch min-entropy loss for array-based PUFs (new research direction, open for further exploration & improvements)

APPLICATION: reduce fuzzy extrator **implementation footprint**, compared to (n-k) bound

APPLICATION: debunk security proof of **reverse fuzzy extractor** (open for repairs)

APPLICATION: motivate the need for **debiasing schemes** (although low-bias PUFs can do without)

Thank you!

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory & Apps Slide 12/12

Appendix

All figures and tables

	b	$\mathbb{E}[P_{\text{error}}]$	$z \times [n_2, k_2, d_2] \circ [n_1, k_1, d_1]$	$\widetilde{\mathbb{H}}_{\infty}(X P)$	PUF size n	$\mathbb{E}[P_{\text{fail}}]$
	0.50	pprox 10.0%	$2 \times [5, 1, 5] \circ [127, 64, 21]$	128	1270	$\approx 3.26 \text{E} - 8$
n-k	0.52	$\approx 10.0\%$	$3 \times [3, 1, 3] \circ [255, 87, 53]$	≈ 131.1	2295	$\approx 1.44 \text{E} - 8$
bound	0.54	$\approx 9.96\%$	$10 \times [5, 1, 5] \circ [255, 155, 27]$	≈ 134.4	12750	$\approx 5.56 \mathrm{E}{-7}$
	0.56	$\approx 9.90\%$	No code within the searc	h space sat	tisfies the co	nstraints.
	0.50	pprox 10.0%	$2 \times [5, 1, 5] \circ [127, 64, 21]$	128	1270	$\approx 3.26 \text{E} - 8$
	0.52	$\approx 10.0\%$	$1 \times [5, 1, 5] \circ [255, 163, 25]$	≈ 134.3	1275	$\approx 4.27 \mathrm{E}{-7}$
	0.54	$\approx 9.96\%$	$2 \times [3, 1, 3] \circ [255, 99, 47]$	≈ 132.5	1530	$\approx 5.35 \mathrm{E}{-7}$
	0.56	$\approx 9.90\%$	$3 \times [3, 1, 3] \circ [255, 87, 53]$	≈ 131.3	2295	$\approx 9.90 \text{E} - 9$
hound	0.58	$\approx 9.81\%$	$2 \times [5, 1, 5] \circ [255, 163, 25]$	≈ 130.0	2550	$\approx 4.85 \mathrm{E}{-7}$
bound	0.60	$\approx 9.71\%$	$3 \times [5, 1, 5] \circ [255, 155, 27]$	≈ 129.5	3825	$\approx 6.96 \text{E} - 8$
	0.62	$\approx 9.58\%$	$4 \times [5, 1, 5] \circ [255, 163, 25]$	≈ 130.4	5100	$\approx 4.42 \text{E} - 7$
	0.64	$\approx 9.42\%$	$10 \times [3, 1, 3] \circ [255, 99, 47]$	≈ 132.8	7650	$\approx 3.87 \mathrm{E}{-7}$
	0.66	$\approx 9.24\%$	$17\times[3,1,3]\circ[255,99,47]$	≈ 129.7	13005	$\approx 3.28 \text{E} - 7$

	b	$\mathbb{E}[P_{\text{error}}]$	$\mathbb{E}[P_{\text{error}} 0]$	$\mathbb{E}[P_{\text{error}} 1]$	Parameters	Retention	$z \times [n_2, k_2, d_2] \circ [n_1, k_1, d_1]$	$ \widetilde{\mathbb{H}}_{\infty}(X P) $	PUF size n	$\mathbb{E}[p_{\text{fail},C_2}]$	$\mathbb{E}[P_{\text{fail}}]$
	0.50	$\approx 10.0\%$	$\approx 10.0\%$	$\approx 10.0\%$	$n_{\text{index}} = 7$	$\approx 71.4\%$	$2 \times [5, 1, 5] \circ [127, 64, 21]$	128	1778	$\approx 1.01 \text{E} - 2$	$\approx 1.70E-7$
	0.54	$\approx 9.96\%$	$\approx 10.6\%$	$\approx 9.40\%$	$n_{\text{index}} = 7$	pprox 71.4%	$2 \times [5, 1, 5] \circ [127, 64, 21]$	128	1778	$\approx 1.12E-2$	$\approx 4.57 \text{E}{-7}$
s	0.58	$\approx 9.81\%$	$\approx 11.2\%$	$\approx 8.79\%$	$n_{\text{index}} = 7$	pprox 71.4%	$1 \times [5, 1, 5] \circ [255, 131, 37]$	131	1785	$\approx 1.41 \text{E} - 2$	$\approx 6.46E-9$
B	0.62	$\approx 9.58\%$	$\approx 11.8\%$	$\approx 8.18\%$	$n_{index} = 8$	62.5%	$2 \times [5, 1, 5] \circ [127, 64, 21]$	128	2032	$\approx 1.17 \text{E} - 2$	$\approx 7.09E-7$
B	0.66	$\approx 9.24\%$	$\approx 12.5\%$	$\approx 7.56\%$	$n_{index} = 8$	62.5%	$1 \times [5, 1, 5] \circ [255, 131, 37]$	131	2040	$\approx 1.83E-2$	$\approx 3.59E-7$
liz	0.70	$\approx 8.80\%$	$\approx 13.2\%$	$\approx 6.92\%$	$n_{index} = 9$	$\approx 77.8\%$	$1 \times [7, 1, 7] \circ [255, 131, 37]$	131	2295	$\approx 1.90E-2$	$\approx 6.27E-7$
era	0.74	$\approx 8.24\%$	$\approx 13.9\%$	$\approx 6.27\%$	$n_{index} = 11$	$\approx 81.8\%$	$1 \times [9, 1, 9] \circ [255, 131, 37]$	131	2805	$\approx 1.62E-2$	$\approx 5.72E-8$
en	0.78	$\approx 7.57\%$	$\approx 14.6\%$	$\approx 5.58\%$	$n_{index} = 13$	$\approx 84.6\%$	$1 \times [11, 1, 11] \circ [255, 131, 37]$	131	3315	$\approx 1.65E-2$	$\approx 7.32E-8$
G	0.82	$\approx 6.76\%$	$\approx 15.4\%$	$\approx 4.85\%$	$n_{index} = 16$	$\approx 68.8\%$	$1 \times [11, 1, 11] \circ [255, 131, 37]$	131	4080	$\approx 1.66E-2$	$\approx 7.57E-8$
	0.86	$\approx 5.80\%$	$\approx 16.4\%$	$\approx 4.07\%$	$n_{index} = 16$	$\approx 81.3\%$	$2 \times [13, 1, 13] \circ [255, 71, 59]$	142	8160	$\approx 3.57E-2$	$\approx 2.85E-8$
	0.90	$\approx 4.64\%$	$\approx 17.5\%$	$\approx 3.21\%$	$n_{index} = 16$	$\approx 81.3\%$	$3 \times [13, 1, 13] \circ [255, 45, 87]$	135	12240	$\approx 7.51E-2$	$\approx 6.42E-7$
	0.50	$\approx 10.0\%$	$\approx 10.0\%$	$\approx 10.0\%$		$\approx 83.4\%$	$4 \times [8, 1, 8] \circ [63, 36, 11]$	144	2418	$\approx 2.73E-3$	$\approx 9.85E-8$
	0.54	$\approx 9.96\%$	$\approx 10.6\%$	$\approx 9.40\%$		$\approx 81.6\%$	$4 \times [8, 1, 8] \circ [63, 36, 11]$	144	2471	$\approx 2.72E-3$	$\approx 9.73E-8$
	0.58	$\approx 9.81\%$	$\approx 11.2\%$	$\approx 8.79\%$	3 passes	pprox 77.0%	$4 \times [8, 1, 8] \circ [63, 36, 11]$	144	2617	$\approx 2.71E-3$	$\approx 9.37E-8$
nn	0.62	$\approx 9.58\%$	$\approx 11.8\%$	$\approx 8.18\%$		pprox 70.7%	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	2675	$\approx 8.70E-4$	$\approx 9.81E-7$
ma	0.66	$\approx 9.24\%$	$\approx 12.5\%$	$\approx 7.56\%$	multi-out	pprox 63.6%	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	2971	$\approx 8.52 \text{E}{-4}$	$\approx 9.05E-7$
em	0.70	$\approx 8.80\%$	$\approx 13.2\%$	$\approx 6.92\%$	$(n_2 \ge 8)$	$\approx 56.2\%$	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	3365	$\approx 8.29 \text{E} - 4$	$\approx 8.12E-7$
Z	0.74	$\approx 8.24\%$	$\approx 13.9\%$	$\approx 6.27\%$		$\approx 48.6\%$	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	3885	$\approx 8.00 \text{E} - 4$	$\approx 7.06E-7$
701	0.78	$\approx 7.57\%$	$\approx 14.6\%$	$\approx 5.58\%$	retention	pprox 41.4%	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	4567	$\approx 7.65 \text{E} - 4$	$\approx 5.91E-7$
-	0.82	$\approx 6.76\%$	$\approx 15.4\%$	$\approx 4.85\%$	yield 99%	$\approx 33.5\%$	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	5650	$\approx 7.23E-4$	$\approx 4.72E-7$
	0.86	$\approx 5.80\%$	$\approx 16.4\%$	$\approx 4.07\%$		pprox 26.1%	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	7237	$\approx 6.73E-4$	$\approx 3.55E-7$
	0.90	$\approx 4.64\%$	$\approx 17.5\%$	$\approx 3.21\%$		$\approx 18.5\%$	$3 \times [10, 1, 10] \circ [63, 45, 7]$	135	10212	$\approx 6.13E-4$	$\approx 2.45E-7$

$p \leftarrow SSGen(x)$	$\widehat{y} \leftarrow SSRep(\widetilde{x}, p)$	
Random $w \in \mathcal{C}$	$\widetilde{w} \leftarrow \widetilde{x} \oplus p = w \oplus e$	(a) Code-offset met
$p \leftarrow x \oplus w$	$\widehat{y} = \widehat{w} \leftarrow Correct(\widetilde{w})$	of Juels et al. [21].
	$\widetilde{w} \leftarrow \widetilde{x} \oplus p = w \oplus e$	(b) Code-offset met
	$\widehat{y} = \widehat{x} \leftarrow p \oplus Correct(\widetilde{w})$	of Dodis et al. [14].
	$\widetilde{w} \leftarrow \widetilde{x} \oplus p = w \oplus e$	(c) Code-offset met
	$\widehat{y} = \widehat{m} \leftarrow Decode(\widetilde{w})$	of Tuyls et al. [32].
$p \leftarrow x \cdot H^T$	$s \leftarrow \tilde{x} \cdot H^T \oplus p = e \cdot H^T$	(d) Syndrome meth
F · · · · ·	Determine \hat{e}	of Bennett et al. [5]
	$\hat{y} = \hat{x} \leftarrow \tilde{x} \oplus \hat{e}$	
$p \leftarrow x(1:k) \cdot A$ $\oplus x(k+1:n)$	$\widehat{w} \leftarrow \text{Correct}(\widetilde{x} \oplus (0 \ p))$ $\widehat{y} = \widehat{x} \leftarrow \widehat{w} \oplus (0 \ p)$	(e) Systematic met of Yu [39].
	$\widehat{y} = \widehat{x}(1:k) \leftarrow Decode(\widetilde{x} \oplus (0 \ \mathbf{p}))$	(f) Systematic meth of Kang et al. [22].
	\$*\\ F	
$p \leftarrow j$ so that $x \in C_j$	$\widehat{y} = \widehat{m} \leftarrow Decode_{\mathcal{C}_j}(\widetilde{x})$	(g) Multi-code met

